Copied to
clipboard

G = C4216D14order 448 = 26·7

16th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4216D14, C14.182+ 1+4, C4⋊C449D14, (C4×D4)⋊18D7, (D4×C28)⋊20C2, (C22×C4)⋊5D14, (C4×C28)⋊32C22, D14⋊Q88C2, C22⋊C448D14, C4⋊Dic79C22, C23⋊D14.5C2, D14.D47C2, (C2×D4).217D14, C422D716C2, C42⋊D732C2, D14.17(C4○D4), C28.48D411C2, C23.D79C22, (C2×C14).100C24, (C2×C28).699C23, Dic7⋊C442C22, D14⋊C4.85C22, (C22×C28)⋊37C22, Dic7.D47C2, (C4×Dic7)⋊52C22, (C2×Dic14)⋊6C22, C2.19(D46D14), C73(C22.45C24), (D4×C14).307C22, C22.12(C4○D28), (C22×D7).35C23, (C23×D7).41C22, C23.174(C22×D7), C22.125(C23×D7), C23.11D1429C2, C23.18D1418C2, C23.23D1416C2, (C22×C14).170C23, (C2×Dic7).207C23, (C22×Dic7).98C22, C4⋊C4⋊D77C2, (C4×C7⋊D4)⋊43C2, C2.23(D7×C4○D4), (C2×D14⋊C4)⋊22C2, (C7×C4⋊C4)⋊61C22, (D7×C22⋊C4)⋊29C2, C2.49(C2×C4○D28), C14.140(C2×C4○D4), (C2×C4×D7).201C22, (C2×C14).16(C4○D4), (C7×C22⋊C4)⋊57C22, (C2×C4).284(C22×D7), (C2×C7⋊D4).16C22, SmallGroup(448,1009)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4216D14
C1C7C14C2×C14C22×D7C23×D7D7×C22⋊C4 — C4216D14
C7C2×C14 — C4216D14
C1C22C4×D4

Generators and relations for C4216D14
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=dad=a-1b2, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 1204 in 248 conjugacy classes, 97 normal (91 characteristic)
C1, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C24, Dic7, C28, D14, D14, C2×C14, C2×C14, C2×C14, C2×C22⋊C4, C42⋊C2, C4×D4, C4×D4, C22≀C2, C22⋊Q8, C22.D4, C4.4D4, C422C2, Dic14, C4×D7, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C22×D7, C22×D7, C22×C14, C22.45C24, C4×Dic7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C23.D7, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C2×Dic14, C2×C4×D7, C22×Dic7, C2×C7⋊D4, C22×C28, D4×C14, C23×D7, C42⋊D7, C422D7, C23.11D14, D7×C22⋊C4, D14.D4, Dic7.D4, D14⋊Q8, C4⋊C4⋊D7, C28.48D4, C2×D14⋊C4, C4×C7⋊D4, C23.23D14, C23.18D14, C23⋊D14, D4×C28, C4216D14
Quotients: C1, C2, C22, C23, D7, C4○D4, C24, D14, C2×C4○D4, 2+ 1+4, C22×D7, C22.45C24, C4○D28, C23×D7, C2×C4○D28, D46D14, D7×C4○D4, C4216D14

Smallest permutation representation of C4216D14
On 112 points
Generators in S112
(1 71 24 90)(2 79 25 98)(3 73 26 92)(4 81 27 86)(5 75 28 94)(6 83 22 88)(7 77 23 96)(8 91 15 72)(9 85 16 80)(10 93 17 74)(11 87 18 82)(12 95 19 76)(13 89 20 84)(14 97 21 78)(29 59 50 111)(30 67 51 105)(31 61 52 99)(32 69 53 107)(33 63 54 101)(34 57 55 109)(35 65 56 103)(36 104 43 66)(37 112 44 60)(38 106 45 68)(39 100 46 62)(40 108 47 70)(41 102 48 64)(42 110 49 58)
(1 38 14 31)(2 39 8 32)(3 40 9 33)(4 41 10 34)(5 42 11 35)(6 36 12 29)(7 37 13 30)(15 53 25 46)(16 54 26 47)(17 55 27 48)(18 56 28 49)(19 50 22 43)(20 51 23 44)(21 52 24 45)(57 81 102 93)(58 82 103 94)(59 83 104 95)(60 84 105 96)(61 71 106 97)(62 72 107 98)(63 73 108 85)(64 74 109 86)(65 75 110 87)(66 76 111 88)(67 77 112 89)(68 78 99 90)(69 79 100 91)(70 80 101 92)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 9)(2 8)(3 14)(4 13)(5 12)(6 11)(7 10)(15 25)(16 24)(17 23)(18 22)(19 28)(20 27)(21 26)(29 49)(30 48)(31 47)(32 46)(33 45)(34 44)(35 43)(36 56)(37 55)(38 54)(39 53)(40 52)(41 51)(42 50)(57 67)(58 66)(59 65)(60 64)(61 63)(68 70)(71 92)(72 91)(73 90)(74 89)(75 88)(76 87)(77 86)(78 85)(79 98)(80 97)(81 96)(82 95)(83 94)(84 93)(99 101)(102 112)(103 111)(104 110)(105 109)(106 108)

G:=sub<Sym(112)| (1,71,24,90)(2,79,25,98)(3,73,26,92)(4,81,27,86)(5,75,28,94)(6,83,22,88)(7,77,23,96)(8,91,15,72)(9,85,16,80)(10,93,17,74)(11,87,18,82)(12,95,19,76)(13,89,20,84)(14,97,21,78)(29,59,50,111)(30,67,51,105)(31,61,52,99)(32,69,53,107)(33,63,54,101)(34,57,55,109)(35,65,56,103)(36,104,43,66)(37,112,44,60)(38,106,45,68)(39,100,46,62)(40,108,47,70)(41,102,48,64)(42,110,49,58), (1,38,14,31)(2,39,8,32)(3,40,9,33)(4,41,10,34)(5,42,11,35)(6,36,12,29)(7,37,13,30)(15,53,25,46)(16,54,26,47)(17,55,27,48)(18,56,28,49)(19,50,22,43)(20,51,23,44)(21,52,24,45)(57,81,102,93)(58,82,103,94)(59,83,104,95)(60,84,105,96)(61,71,106,97)(62,72,107,98)(63,73,108,85)(64,74,109,86)(65,75,110,87)(66,76,111,88)(67,77,112,89)(68,78,99,90)(69,79,100,91)(70,80,101,92), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,9)(2,8)(3,14)(4,13)(5,12)(6,11)(7,10)(15,25)(16,24)(17,23)(18,22)(19,28)(20,27)(21,26)(29,49)(30,48)(31,47)(32,46)(33,45)(34,44)(35,43)(36,56)(37,55)(38,54)(39,53)(40,52)(41,51)(42,50)(57,67)(58,66)(59,65)(60,64)(61,63)(68,70)(71,92)(72,91)(73,90)(74,89)(75,88)(76,87)(77,86)(78,85)(79,98)(80,97)(81,96)(82,95)(83,94)(84,93)(99,101)(102,112)(103,111)(104,110)(105,109)(106,108)>;

G:=Group( (1,71,24,90)(2,79,25,98)(3,73,26,92)(4,81,27,86)(5,75,28,94)(6,83,22,88)(7,77,23,96)(8,91,15,72)(9,85,16,80)(10,93,17,74)(11,87,18,82)(12,95,19,76)(13,89,20,84)(14,97,21,78)(29,59,50,111)(30,67,51,105)(31,61,52,99)(32,69,53,107)(33,63,54,101)(34,57,55,109)(35,65,56,103)(36,104,43,66)(37,112,44,60)(38,106,45,68)(39,100,46,62)(40,108,47,70)(41,102,48,64)(42,110,49,58), (1,38,14,31)(2,39,8,32)(3,40,9,33)(4,41,10,34)(5,42,11,35)(6,36,12,29)(7,37,13,30)(15,53,25,46)(16,54,26,47)(17,55,27,48)(18,56,28,49)(19,50,22,43)(20,51,23,44)(21,52,24,45)(57,81,102,93)(58,82,103,94)(59,83,104,95)(60,84,105,96)(61,71,106,97)(62,72,107,98)(63,73,108,85)(64,74,109,86)(65,75,110,87)(66,76,111,88)(67,77,112,89)(68,78,99,90)(69,79,100,91)(70,80,101,92), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,9)(2,8)(3,14)(4,13)(5,12)(6,11)(7,10)(15,25)(16,24)(17,23)(18,22)(19,28)(20,27)(21,26)(29,49)(30,48)(31,47)(32,46)(33,45)(34,44)(35,43)(36,56)(37,55)(38,54)(39,53)(40,52)(41,51)(42,50)(57,67)(58,66)(59,65)(60,64)(61,63)(68,70)(71,92)(72,91)(73,90)(74,89)(75,88)(76,87)(77,86)(78,85)(79,98)(80,97)(81,96)(82,95)(83,94)(84,93)(99,101)(102,112)(103,111)(104,110)(105,109)(106,108) );

G=PermutationGroup([[(1,71,24,90),(2,79,25,98),(3,73,26,92),(4,81,27,86),(5,75,28,94),(6,83,22,88),(7,77,23,96),(8,91,15,72),(9,85,16,80),(10,93,17,74),(11,87,18,82),(12,95,19,76),(13,89,20,84),(14,97,21,78),(29,59,50,111),(30,67,51,105),(31,61,52,99),(32,69,53,107),(33,63,54,101),(34,57,55,109),(35,65,56,103),(36,104,43,66),(37,112,44,60),(38,106,45,68),(39,100,46,62),(40,108,47,70),(41,102,48,64),(42,110,49,58)], [(1,38,14,31),(2,39,8,32),(3,40,9,33),(4,41,10,34),(5,42,11,35),(6,36,12,29),(7,37,13,30),(15,53,25,46),(16,54,26,47),(17,55,27,48),(18,56,28,49),(19,50,22,43),(20,51,23,44),(21,52,24,45),(57,81,102,93),(58,82,103,94),(59,83,104,95),(60,84,105,96),(61,71,106,97),(62,72,107,98),(63,73,108,85),(64,74,109,86),(65,75,110,87),(66,76,111,88),(67,77,112,89),(68,78,99,90),(69,79,100,91),(70,80,101,92)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,9),(2,8),(3,14),(4,13),(5,12),(6,11),(7,10),(15,25),(16,24),(17,23),(18,22),(19,28),(20,27),(21,26),(29,49),(30,48),(31,47),(32,46),(33,45),(34,44),(35,43),(36,56),(37,55),(38,54),(39,53),(40,52),(41,51),(42,50),(57,67),(58,66),(59,65),(60,64),(61,63),(68,70),(71,92),(72,91),(73,90),(74,89),(75,88),(76,87),(77,86),(78,85),(79,98),(80,97),(81,96),(82,95),(83,94),(84,93),(99,101),(102,112),(103,111),(104,110),(105,109),(106,108)]])

85 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4F4G4H4I4J4K···4O7A7B7C14A···14I14J···14U28A···28L28M···28AJ
order12222222224···444444···477714···1414···1428···2828···28
size11112241414282···244141428···282222···24···42···24···4

85 irreducible representations

dim1111111111111111222222222444
type+++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2D7C4○D4C4○D4D14D14D14D14D14C4○D282+ 1+4D46D14D7×C4○D4
kernelC4216D14C42⋊D7C422D7C23.11D14D7×C22⋊C4D14.D4Dic7.D4D14⋊Q8C4⋊C4⋊D7C28.48D4C2×D14⋊C4C4×C7⋊D4C23.23D14C23.18D14C23⋊D14D4×C28C4×D4D14C2×C14C42C22⋊C4C4⋊C4C22×C4C2×D4C22C14C2C2
# reps11111111111111113443636324166

Matrix representation of C4216D14 in GL6(𝔽29)

1200000
0120000
001000
000100
000091
0000720
,
220000
12270000
0028000
0002800
0000170
0000017
,
100000
010000
00221000
00191000
000010
00001128
,
2800000
210000
000100
001000
0000280
0000181

G:=sub<GL(6,GF(29))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,7,0,0,0,0,1,20],[2,12,0,0,0,0,2,27,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,17,0,0,0,0,0,0,17],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,22,19,0,0,0,0,10,10,0,0,0,0,0,0,1,11,0,0,0,0,0,28],[28,2,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,28,18,0,0,0,0,0,1] >;

C4216D14 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{16}D_{14}
% in TeX

G:=Group("C4^2:16D14");
// GroupNames label

G:=SmallGroup(448,1009);
// by ID

G=gap.SmallGroup(448,1009);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,184,1571,136,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1*b^2,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽